Uncategorized

Future Of AI Photography – Qualcomm

 

Other than calculation photography, amazing camera equipment, and picture signal processors, bleeding edge versatile photography is progressively controlled by AI calculations — otherwise called man-made consciousness (simulated intelligence). This photography procedure guarantees to improve quality in the push towards DSLR-like quality while offering inventive better approaches to shoot and alter pictures and video. 

The way to AI is the utilization of neural systems. This is a sort of calculation that is regularly compared to the human mind. This examination is drawn from a neural system’s capacity to be prepared, using information, to perceive designs, enabling it to make exceptionally exact arrangements for complex information types like sound and pictures. 

With regards to photography, the capacity to watch, learn, produce, and arrange a wide scope of utilizations. These applications can incorporate highlights, for example, expanding on computational photography procedures to improving post-preparing calculations, constant programming boked with 4K video, or even totally swapping out the shades of the garments you’re wearing.

How neural networks work

Neural networks are a hugely complex topic, so we’re only going to cover the basics here. For more advanced reading, check out guides here and here.

Neural networks are made up of nodes, which is a signifier for where some computation is done. Each node combines an input with a weight which amplifies or attenuates the significance of that particular node. Several nodes often work in parallel, creating a layer of nodes that performs a larger task. This could be feature detection within an image, for example. Multiple nodes and layers can be summed together and passed on to other nodes and layers, forming a deeper network with more powerful capabilities.

Kernix

The output from each node and layer is scaled as a probability function. By looking at lots of different features and attributes, a neural network can rate the input as a probability match against all of the expected potential outputs. This is how image detection algorithms decide whether a picture looks more like a cat or an orange, but you have to tell it what to look for first.

Neural networks aren’t programmed quite like traditional computer algorithms. Instead, they are trained on datasets, such as images, sound files, etc. The weights of each node are adjusted gradually over time via a feedback loop, based on how well the network did at matching the inputs to the correct outputs. This gradual “learning” of the rules takes considerable preparation, time, and computing power, but produces phenomenally accurate results.

Neural networks inside your smartphone

Neural networks can run on a variety of hardware components, including the CPU and GPU parts common inside a range of computing devices, including your smartphone. However, some neural networks can require more processing power than these hardware components can give, and dedicated hardware can provide the optimal processing needed.

Inside the Qualcomm® Snapdragon™ 855 Mobile Platform, for instance, you’ll find the latest Qualcomm® Hexagon™ 690 Digital Signal Processor (DSP), boasting improved Vector processing units and a new Tensor Accelerator specifically for machine learning tasks. Other Snapdragon Mobile Platforms also feature the Hexagon DSP component, with varying capabilities. With that said, neural nets aren’t limited to just running on the DSP on Snapdragon and other mobile platforms. The type of processor used depends on the workload.

Qualcomm Snapdragon 855 machine learning improvements compared to the previous generation

Qualcomm Technologies opens up its DSP and machine learning capabilities to third-party developers through its Qualcomm® Neural Processing SDK. This allows apps to run neural nets across any of the hardware cores inside a Snapdragon Mobile Platform. For example, Google Pixel smartphones tap into the Hexagon DSP and its own Visual Core to accelerate its impressive HDR+ photography feature. Qualcomm Technologies works with software vendors such as Arcsoft, Elevoc, Polar, Loom, Mobius, Morpho, and more, supporting features ranging from video boked to avatar creation using machine learning running on the DSP.

AI could shape the future of photography

Now we know how neural networks work, the important question is what could it do for us and our photographs?

Neural networks are used to improve a range of common photography algorithms. De-noise, for example, could be improved with training to offer superior image clean up tailored to the specific camera or type of shot. Likewise, for low light, a neural net could detect bright and dark parts of the image, allowing for light and color enhancements in specific parts of the scene.

More advanced use cases are increasingly common in smartphone photography. Super-resolution zooms use neural nets to combine multiple images into a single high-resolution shot for superior looking digital zoom. Neural nets could also be trained to accurately stitch multiple photo exposures together for enhanced HDR and night shots.

AI photography could include super-resolution zoom, real-time bokeh, and improved image quality.

Video could also benefit from the adoption of this technology. Real-time object detection is designed to allow apps to introduce software bokeh effects straight into video as you record. Similar techniques also support real-time object swapping and removal. This includes swapping out the background in a video, changing or removing colors, and even replacing items of clothing or 

The power of neural networking and AI photography ranges from quality enhancements to help close the gap on DSLR to powerful creativity tools that help make producing unique content a breeze. Either way, it’s a powerful technology that’s fundamental to future improvements heading to mobile photography.

Content sponsored by Qualcomm Technologies, Inc.

Qualcomm Snapdragon, Qualcomm Hexagon, Qualcomm Adreno, Qualcomm Spectra, Qualcomm AI Engine and Qualcomm Kryo are products of Qualcomm Technologies, Inc. and/or its subsidiaries.

Leave a Reply

Your email address will not be published. Required fields are marked *

Back To Top